EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-662004

Steering Languages and Future
Science Codes

L. E. Busby

October 3, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Steering Languages and
Futur e Science Codes

Lee BusbyLLNL
busbyl@linl.ge

September 15, 2014
Rev. 11

Contents

1. Summary Recommendations. 1
2. Structure of thedDer. e 1
3. What is a Steering Language?Y\Wse One?. oo ittt it it i i e i e e 2
3.1, Ba&ground 2...
3.2.0urRointof Mew 2..
4. Recommendation: Build a Pilot Code UsingLua. 4
4.1. Comparison of Sote Code Size. 5.
4.2. Speedand Memory Banaarks 5.
EXpression Brsers. e 5..
Scimark Benchmarks. 6. .
Crosscheck 9..
5. Recommendation: Use Python More, not Less.cooviiiinnn... 9
6. Recommendation: Consider Some Ideas from The Basis System. 10
6.1. The Basis Runrie Database 11.
6.2. The Basis Data DescriptionLangea. 11
6.3. The Basis User Interface Construction System. 11
6.4. BaSIS SUMMALY.ttt ittt ettt e e et et 12 ..
7. CONCIUSION. . . . e e 12. ..
7.1, AKNOWIEd@MENLS. oo e 13..
8. References and Additional Reading 14.
9. Appendix A: ExpressiondPser Benchmarks 17
10. Appendix B: WrappingdUr Code.ottt 18.
11. Appendix C: Comments on Some Current Languages and Programs. 20

List of Tables

Table 1 — o Questionsfor AXand B i 3.
Table 2 — Some Steering Language Use Cases oo v ittt 3
Table 3 — Self-identification by Dision 4.
Table 4 — Code Sizes for Some Language Implementations. 5
Table 5 — Summary Expressiomfer Benchmark Results | 6
Table 6 — Scimark Results: Ratios to cc-Oalies, plus Peak Memory(MB). 6
Table 7 — Full Expressiond?ser Benchmark Results. 17

Table 8 — Interhce Code Counts for Sa&ral Systems 18

Steering Languages and
Future Science Codes

Lee BusbyLLNL
busbyl@linl.ge

1. Summary Recommendations

* Build a pilot code using Lua as the steering langua@andard Lua w&s 3.5x smaller
and 10x &ster than Standard Python acrose ficimark benchmarkdt may be more
suitable for static linking and as an embedded steering language. It is mature, well-doc-
umented, and widely used in nyaareas, with a recent uptick in scientific users and
codes. These points and others will be more fullyetigped in the sections that foNlo
» Use Python more, not less. Python issaywgood choice as a steering language. More-
over, it has become arxeellent choice as a primary programming language foryman
application areas and uses. There are a wadiety of tools and techniqueswadhat
effectively allov the scientist/programmer to write (just) Python, then setdgti
choose hev and hev much to optimize their code as needed for speed. Consider pur
chasing support for a comprehemsiPython user eronment such as Anaconda
[CONI]] for a period of time.
» Consider some lessons from three components of the Basis project, and try to carry
some of their good ideas into futurenk:
A) The Basis run-time database (RDB), which is shared with and fully accessible from
compiled code, using an ISO C API;
B) A data description language (DDL) thatvdpers use to define and initialize the
RDB;
C) A domain specific language (DSL) for use ilting the user intedce for each
project.
The first tvo kullets talen together are not intended to suggest an either/or future. Python
and Lua can wrk together well if and when that becomes desireable/eirt, the inter
faces between codes will continue to be important. bdted that emphasize natitypes
will usually be a good choice if language interoperability is important.

2. Structure of the Raper

The rest of the paper is in &ymain parts. Some general background information and ter
minology is gven in the net section. This will hopefully makit easier to folle the dis-
cussion in the remaindeEach of the three recommendationsvabwill be discussed

1Disclaimer: The author is participating in an ongoixgleation of Lua as a steering language for
the Blast KOL1] code.

L. Busbhy STEERING LANGLAGES, 8/2014

separatelywith a final section for concluding remarks and agkedgements. Three
appendices contain information tetend or complete earlier material.

3. What is a Steering Language? WhUse One?

3.1. Ba&ground

In 1984, Rwl Dubois PUBI1] introduced Basis and the idea of steering langesato
LLNL. His work preceded &l (1987), Tcl (1988), and Python (1989) by some years.
MATLAB [MOL1] the compan was also founded in 1984. Basis had some similarities
with MATLAB, but it went much further in definingays to connect an interagi com-
mand interpreter to compiled code packages. John OusterhHt280 paperQUS]
introduced the idea of a language-in-a-library (Tcl), embeddable in other tools, o man
people outside our scientific communitye went on in 1998QUSZ to divide (most)
programming languages intodwnain catgories: Wakly typed scripting languages dik

Tcl, used on theirwen for rapid deelopment, or to'glue” together components written

in strongly typed system language®li€. He suggested th&bcripting and system pr
gramming ae symbiotic, and, to paraphrase, that scripting languagesvatiomary
more, and more casual programmers, toareflective use of computing peer.

Python hardly needs further introductionann@ua [LUA1L], [IERY] is less well-knavn. It
began in 1993 as a configuration language, mostly for industrial clientsogfiaf, the
Computer Graphicsethnology Group of PUC-Rio in Brazil. It sity evolved into a
complete languagever the na&t 7-10 years. In a 2011 papégrusalimsci et al. [ER2)
distinguish two ways that a scripting language can begraéed with code written in a
system language: In the first form xtending — the main program is written in the script-
ing language, which isxéended using libraries and functions written in the system lan-
guage. In the second form — embedding — the main program is written in the system
language, nw called the host program, which can run scripts and call functions defined
in the scripting language. Although this terminology is not precise, (most real coges ha
some of both types of irgeation), | will use their definitions for those terms in the rest of
the paperAlso, the term steering langge implies a conte where tvo languages are
being used togetheone to “steer’ the other whereas scripting langge may be just the
one. Its often fine to write complete programs using (only) Python, Lua, or Basis. | will
use those terms syngmously unless the contérequires otherwise.

3.2. Your Point of lew

Ok, let’s test your kneledge sodr with a short quiz. The gper form for a net genel-
tion physics code is:

A) An ensemble of mostly independent compiled packages, glued together with and
extending a central steering language tHatows all, sees all’

B) A coherent compiled core, composed of packages designedvioakoait one another
and work together well, along with an embedded scripting language used for problem
setup and such other tasks as found to be necessary;

C) Sometimes one, sometimes the other — | just do nat.kno

L. Busbhy STEERING LANGLAGES, 8/2014

(My own answer is probably C, byay of A.) The small questionnaire that | passed
around in April vas partly for fun, to introduce my stydwit it did male clear that other
wise reasonable people Meadifferent opinions. Here is the split between AX- and
B-division responses to a couple of the questions posed then:

Question AX B
The steering languge is — \éry Important : So So 16:3 3:3
Python is the obvioudoice — Yes! Python foreer : Well, okay | 125 2:4
Table 1 - Wo Questions ér AX and B

That is hardly significant in gnstatistical sense, of course, and if my samaiked to
account for your opinions, | am sorijowever, our diferences, such as thenay be, are
not just confined to LLNL. Game deloper Tm Sweeng [SWE] identified four reasons
why mixing a scripting language into compiled code might create problems, which are
paraphrased here:

» [As a system gmws] there is increasing pressure kpese more of its natt C++ fea-
tures to the scripting gitonment. [The system)jventually grevs into a desert of com-
plexity and duplication.

» There is a seeminglyxponential increase in the cost and corripye[of the] “interop”
layer where C++ and script code communicate. [Interop] becomss tkicky for
advanced data types such as containers

» Developers seeking to takadantage of [...] naie C++ features end upwuitling their
code unnaturally between the scrigingd and the C++ arld

» Developers need to look at program béba holistically, but quickly find that script
dehugging tools and C++ debging tools are separate and incompatible.

Sweeng and his team felt strongly enough about these issues to rigigti@g (propri-
etary) scripting language back out of their popular Came engine, after putting it in
and lving with it for some years. Although | feel that scripting languages do bring net
benefit to our pysics codes, | ackmdedge Sweengs points, and alle that | hae
encountered them in the past. The questionnaire alsd skl to rate the relag impor
tance of seeral ‘use casesfor a steering language. Here are thierage scores from 25
replies. (In this case, AX- and B-iion responses were lumped together

Use Case Mean &¢be1,M=2,H=3)
Set up job input, check syntax 2.70
Postprocess output 2.61

Make custom output files 2.50

Steer code during run 2.44

Play around, learn code 1.78
Handle unusual input, etc. 1.86

Table 2 — Some Steering Language Use Cases

Apparently wefe a little uncomfortable with the idea of playing around atkweven to
learn hov to use a ng code. There isha lot more to say about those specific results, b

-3-

L. Busbhy STEERING LANGLAGES, 8/2014

defining a reasonable set of use cases is certainly part of a successful steering language
project. One additional table (3) st®hav the responders self-identified asdesigner
or as a‘teveloper’.

| am more of a ... ‘ AX B
Designer : Deeloper \ 10:10 4.2
Table 3 — Self-identification by Dvision

Finally, in B-division, the breakden by years in field (<10:10-20:>20)as 1:3:2; AX
was 6:4:9.

4. Recommendation: Build a Pilot Code Using Lua

The primary purpose of this section is towlraut the diferences between Python and
Lua, in order to justify the recommendation. That said, the languagesybde a bit in
common. Their syntax is generally procedural. Assignments, function definitions and
function invocations are easy to recognize in either language. Python uses indentation to
indicate block structure. Lua is more traditional in its useegfviords to indicate block
structure. White space in Lua is freeform. Lua is simplg,itohas some sophisticated
features such as first-class functions, closures, coroutines, iterators, and more. (None of
which a casual user needs to understand.) Syntactitadlgemsdir to say that neither
language requires muchfeft to learn and use. UnkkPython, Lua has no pre-defined
class statement,ub it does hee mechanisms that alloobject-oriented integices to be
constructed, if desired. At thevid of linking to C code, the Lua API contained about 113
functions in 2007, whereas the Python APl had about 656 public functidig11]
(Neither has changed greatly in the lasteseyears.) A shortxample belw illustrates

basic syntax. Morexample code is\ailable in the Scimark benchmarks run as part of
this study [LEB1]

Python: Lua:
def factorial(n): function factorial(n)
if n==0: if n == 0 then
return 1 return 1
else: else
return n*factorial(n-1) return n*factorial(n-1)
end
end

There are at least tnmajor implementations of the Lua library and language. The first is
“Standard Lud, the original \ersion from Brazil. The second is Luajit,JJ1] which is

a just-in-time compiler for Lua.dra first approximation, the twersions are compatible,
and compatible at the application binary iraed (ABI) level: A code can link to either
library without recompiling or anspecial dbrt. Luajit is probably responsible for much
of the recent sge in interest among scientific users of Lua. Besides being rastdr fn
general, Luajit has arxeellent foreign function inteaice that can simplify much of the

L. Busbhy STEERING LANGLAGES, 8/2014

effort in linking to C libraries. Br us at LLNL, havever, it's important to note that Luajit
is not presentlyailable for the PPC64 architecture (Sequoia). Standard Lwzanisuls
for its portability and is &ailable for all our platforms.

4.1. Comparison of Soaee Code Size

Earlier, the comment as made that Lua is smaller than Python. That is trueverae
senses. Let bagin with the werall size of the source code for the respectiackages.
The folloving table gies some basic metrics about Lua, Python, amdrakrelated or
otherwise interesting codes. M is included because it is required foerfa, Numba,
and Julia, which will be discussed lat&he numbers reported in the table are in thou-
sands of lines of code (KLOC), and were collected using the Perl script Clo®1]
Blank lines and comments are not counted.

Code-\érsion C/C++ Python Lua Other ofal Dependencies
Lua-5.1.5 12.7 - 0.4 - 131 C

Luajit-2.0.3 59.6 - 8.9 - 685 C

LLVM-3.3 1465 11.6 - 369 1846 C, C++
Terra-6768359 8.5 - 4.3 - 12.8 MM, Luajit
Python-2.7.2 426.8 405.2 - 45.0 877 C

Numpy-1.6 107.7 75.9 - 1 183.6 C, Python
Scipy-0.9 438.5 76.8 - 1 515.3 C, Crtrarf; ...
Cython-0.20.2 8.9 83.4 - - 92.3 C, Python
Pypy-2.3.1 48.4 1002 - 5.2 1056 C, Python, ...
Numba-0.13.3 8.7 66.2 - - 74.9 MM, Numpy, ...

Table 4 — Code Sizesof Some Language Implementations

We need to be careful in toutingaemall something is, of course. Small sizealsd
economy if you gie up required functionalityPython + Nump + Scipy is an indispens-

able tool for may scientists. dgetheythey sum to more than 1%z million lines of code. Is

that required for basic code steering? In my opinion, Standard Lua (13 KLOC) or Luajit
(69 KLOC) are capable of handling the basic steering task, and enough smaller as to
make a qualitatie difference in planning for their support and maintenance within a
development team.

4.2. Speed and Memory Bantarks
We can ague about functionalitybut lines of code isdirly objectve and easy to mea-

sure. Demonstrating dérences in memory size ankkeution speed tals more wrk. To
that end, | ran ter separate sets of benchmarks that included the languages of interest.

Expression Rrsers

Expression pasers are a little byvay in programming that | learned a bit more about in
doing this studyHere at LLNL, the Blast code uses atpeession parser named Fpar,
which allavs users to define at runtime what arfecvely one-line functions of 2-4 real
variables. V& duplicated the functionality using Lua recendlgd were curious about the

-5-

L. Busbhy STEERING LANGLAGES, 8/2014

relatve performance. i an area of steering language use that | had not had much
experience with before, so | carried out a set of benchmark runs, the mean results of
which are summarized in the short table here. Arastol? [PAR1] has done a much

more etensive set of benchmarks foxgression parsers,ub did not include Lua or
Python in his tests. Note thatpgession parsing in the sense of these tests is inherently
scalar In particulay it would be possible to run the tests using Python + Nyrbpt that

would run slever (I checled) than standard Python, because the tests do nctatsesv

Language - C++(secj Fparser Lua Luajit Python
Total seconds | Mean Ratio — 15.53#6 151 439 1.70 10.26
Table 5 — Summary Expession Rrser Benchmark Results

Full results of my runs aregn in Appendix A. The complete code to reproduce these
benchmarks and the follang Scimark results is at EB1] . As seen in the table, pure
C++ averages about 1% timeaster than Fparsewver 26 \arious @pressions, and is
about 10 timesdster than Pythonver the same set. These results are much better for all
three scripting languages than most general benchmarks demonstrateel theliés due

to the fct that gpressions, or at least these 26, tend to concentrate most of fieiimef
standard math library routines. All &wf the languages link to the same math lihrangl
computing sin(a) + cos(b) will spend most of its time in the libreayardless of which
language is being used.

Scimark Benchmarks

The Scimark $CI1] benchmarks in their original form includevdaand C implementa-
tions of five common numeric algorithms. MalP[PAL1] wrote a lua/luaijit @ersion of the
tests. H. Ardo ARD1] wrote a Python/Pypversion of Scimark, as part of adar set of
benchmark tests for the PypyYP] project. | used &I's code without anessential
changes for the Lua, Luajit, an@rfa results gien here. | modified his code slightly for
the results labeledj-uopt’’: Luajit has the ability to creat&unboxed” arrays of natie C
types, and it has bit operators distinct from standard Lua. The lj-uopt results turn OFF
those optimizations.

I modified Ardos code as needed to nealt standaloneevsion of Scimark for Python.
That code is used by both standard Python andg.PFype Nump, Cython, and Numba
versions each required thewvio separate set of modifications. The reader may note that |
am not a Pythonxert, nor Lua, nor gnother of the scripting languages represented
here, for that matteThe code that | wrote is intended to be represeptati “a good

first attempt’in each language. Mamossible optimizations could no doubt be made. (I
would be hapyp to receve corrections and impvements.) Furthermore, some of the code
“cheats” For example, the Nump version uses itsuiltin random number generator
instead of the ersion from Ardo, becauseyaneasonable Nunypprogrammer wuld do

that. And a real Cython programmeouwid probably use Nunypto do more of the ark

in that \ersion, lnt | chose to &ep most of the loops in Cython, to better understand what
that implementation by itself can do.

The Scimark benchmarks rundigeparate tests, in order: #@sf fourier transform (FFT),
Successie overrelaxation (SOR), a Monte Carlo calculation of tlzdue of 771(MC), a

-6-

L. Busbhy STEERING LANGLAGES, 8/2014

Raw Scimarkesults in MFLOPS a shown for cc-O2.&lues for other
languages ae in ratio to the cc-O2 values: A smaller number is faster

LANG FFT SOR MC SMV LU MEAN || PKMEM(MB)
cc-02 7149 802.9 201.8 1032.1 14222 8348 0.27
luajit 1.78 0.87 0.81 2.59 1.1 1.31 0.85
lj-uopt 1.82 0.90 2.20 3.72 1.56 1.6(8 1.0
lua 61.9 26.2 24.1 55.7 54.3 43.8 1.1
terra 1.55 0.88 0.80 2.52 1.18 1.20 7.2
python 276. 1041. 200. 232. 1883. 436. 3.9
numpy 3.23 2.33 230. 2.31 1.00 1.71 29.1
cython 12.3 1.41 6.23 3.23 7.19 3.55 269.4
pypy 5.44 1.45 4.04 8.25 7.0/ 3.98 32.6
numba 1.99 1.03 38.1 2.02 869. 2.53 110.0

Table 6 — Scimark Results: Ratios to cc-O2 8Mues, plus Rak Memory(MB)

1000—¢
; cython
1004k numba
o - YDy
= T numgy_— 4 !
o 104; terra
g = python
= :
14E lua, luajit
E cc-02
0.1 | | | | |
FFT SOR MC SMV LU

Fig. 1: Memory usage during five Scimark tests

sparse matrix-ector multiplication (SMV), and an LU decomposition of a matrix (LU).
The original benchmarks rufsmall” and “large” tests, in the sense of memory; | ran
only the ‘small” versions. Specificallyeach problem is set up at theragi size, then

timed for running N = 1yxle. If the cpu time required to do thatceeded 2.0 seconds,

the test is finished. Otherwise, N is doubled and the test ruais,agntil cpu time is
greater than 2 seconds. A simple formula is then applied to compute the number of float-
ing point operations required to do the taskjid#id by the cpu time, to output a
MFLOPS rating for that test. In the tablewraesults (MFLOPS”) are shaevn for the
“cc-02" row. (cc-02 is the Carsion of Scimark, compiled at the -Ofdé) Results for

the other languages arevgin as a ratio to thosalues. So for anlanguage xcept cc-

-7-

L. Busbhy STEERING LANGLAGES, 8/2014

02, a smaller score is bett€or example, Lua vas 61.9 times sleer than cc-O2 running

the FFT test, and Lusrav Scimark score for that testaw 714.9+61.9 = 11.55. Scores
reported in the MEAN column are the ratio of the mean Scimark scores, not the mean of
the ratios.

Each language required about 30 seconds to run the full seedkfits. While the test

was running, | separately measured the memory size of the test process, at one second
intervals, using the smemMAC1] program. Peak memory usage, ingaeytes, is
reported in the'PKMEM’’ column of the table. Those memory results seemed interest-

ing enough to plot as a full time series, seen in Figure 1. The x-axis measures time, with
marks shwing roughly which of the fie tests s running at a gen moment. (I8 diffi-

cult to be precise, because the clock timges slightly among the 10 languages.) Note

that the y-axis is logrithmic.

The Scimark and memory usage results presented here are broadly consistent with other
benchmark tests that | Y& seen, so | as not especially surprised by them. yiage, |
believe, consistent with the earlier assertion that Lua and Luajitrexticeably fister and
smaller’. Standard Lua as about 10x (436+43.83dter and 3.5x (3.9+1.1) smaller than
standard Python. That said, these benchmarks,alkothers, mostly demonstratewho
difficult it is to produce definite results. | spent almost avworking weeks assembling

all the ecutables onto one machine, writing code,udgiing, and optimizing in an
effort to produce results that are, in therds of a &mous nes netvork, fair and bal-
anced. Wo weeks was barely enough. Some other interesting Python implementations
include Rirakeet, Pyston, Theano, and Pyhr Time considerations limited me to the
five shavn here. A fev more comments about the specific results andxpgreence:

* Numpy gave the best werall performance among the divPython implementations
tested, by adirly substantial main. | was disappointed with its results on the Monte
Carlo test; surely that can be imped. Also, in the SOR test, the naturahywto
process the matrix using Numps to use an arraypression to compute each element
as the werage of its four neighbors. Arraxpmressions create temporary copies, SO
would appear to require a non-progressalgorithm. In short, the Numpversion of
the SOR test is actually using Jacobi iteration, which required for comvergence.
Jacobi is technically skeer than SOR, Wt in this case the arraxgression is still at
least 100 timesafster than the wectorized loops — anself-respecting Numppro-
grammer would do it that vay, | think.

» Cython is a Wibrid language, mostly Python, with type declarations that laoklifar to
a C programmelCython @ve \ery respectable results here, although its memory usage
was quite high twards the end. Cython seems to balance theraleneeds of a scien-
tific programmer rather well. It alles optimization to be done a little at a times it’
friendly to Numypy, it's easy to link to other libraries, the syntax seems clear to a C pro-
grammey and it felt stable. On this particular benchmark, Cython could easiyHeal
the best score among thediYython implementations tested: It couldrdhaun the
Numpy code in gery case xcept Monte Carlo, where the wettorized Cython code
was 37x &ster than (gctorized) Nump.

* Pypy is a just-in-time implementation of Python. Byip the only other code capable of

L. Busbhy STEERING LANGLAGES, 8/2014

running eactly the same script as standard Python (just 144ter) It therefore didr’
require ag fiddling on my part. UnfortunatelPypy and Nump/Scipy seem not to get
along \ery well.

* Numba turned in the second beserll speed results among the Python implementa-
tions. Havever, it seemed ... toughAnd the results for the LU test are just mysterious
to me. The code for Numba looks nearly the same as theveygion, &cept for the
“@ijit'"’ decorator Yet Pyy ran that test more than 122 timastér than Numba. | tried
several \ariations of the LU code for Numb&er seeral days, and found nothing that
would improve the reported results. Surely this is a case of user ignorance or error

Crosscheck

Two LLNL codes - Lasneand Ares - that optionally load Python as a library were
available to meé. This made it possible to measure memory size of the runnieg e
cutable before and after loading Python. Lasloads Python dynamicallymmediately
after starting, Lasnehad a memory footprint of about 38.6MB. Starting Python (includ-
ing Numpy) changed that to 49.3, an increase of about 10.7MB. Ares loads Python stati-
cally. The non-Pythonersion vas about 28.4MB. Linking Pythoragg a starting size of
35.6; initializing and importing Nunypand Scig increased memory to 50.7MB. So in
very rough terms, adding Python and Nyntg a code appears to addyanere from 10

to 22MB or so to the size of the memory image. Measurement of a standalgnef cop
Python shered an initial size of 3.2MB; importing Numpncreased the size to 11.7MB.
These are similar numbers to theues seen during the Scimark tests.

5. Recommendation: Use Python Ma, not Less

Enthusiasm for Python as a steering language has perhaps onlybeedee by enthu-
siasm for it as a scripting language. That is, ynpaople [UC1] would be happ to use
only Python, and at least figunatly, leare the system language to library authors. Much
of the more recent ark in the Python deslopment community reflects that sentiment:
Pyrex, Cython, IPython, Pyp Numba, Pyston, &aleet, and manothers are ébrts to
malke Python the scripting language intaaatér and therefore more compreheas$ool.

My own informal surey of recent scientific Python projects suggests to me that the cen-
ter of graity has indeed shifted. The standard tools once were SWIG andyNtwhp
lowed shortly by Scip It seems more commonwdo write scientific programs using
Cython. In addition toxeellent support for Numpand Scip, Cythons foreign function
interface can oliate much of the &rt of wrapping &isting system language code. It is
highly compatible with standard Python, and nmndests shaed that simply compiling

an otherwise unchanged Python module with Cython resulted in a dynamically loadable
module about 2xaster than standard Python. From there, optimization can proceed a lit-
tle at a time. The modules produced by Cython are not small, and the running code may
take substantial memoras was demonstrated earlier in the Scimark runs, that is

really not an issue most of the time.

As a ‘desktop interhce’, IPython has good support for Cython, along with Yyp
2These measurements were made on an X86_64 (64 bit) system.

-0-

L. Busbhy STEERING LANGLAGES, 8/2014

Numba, and manother of the &rious analytic and plotting packages for Python. The
one dificulty that | experienced during the preparation of my studysvin assembling a
complete, self-consistent Pythonveonment that included all the pieces for doing the
work. My own job assignmentwer most of the past 15-20 years has not required much
Python vork. | developed a couple ofafrly extensive Python modules in 1996-97utb
would otherwise describe myself as an occasional lideas nger been txial to assem-

ble all the parts of a substantial Pythowimment, and the current plethora of tools
malkes that hardenot easier

My work benefited greatly from thevailability of the ‘Anacondd’ Python distritution
[CON1] from Continuum Analytics. | as fortunate that my primary machine for running
the benchmarks is supported by atisting binary distrilntion of Anaconda. Gen the
increased interest in Python as a scientific end-user language vandhg dificulty in
building a complete afronment, | specifically recommend that we consider purchasing
support for a distribstion such as Anaconda for a period of time. There are other similar
Python distribitions aailable, and | defer to others more lWiedgeable in selecting a
particular one.

It is also important to distinguish here between Python as a scripting language and Python
as a steering language. As a scripting language, our entire community of Python pro-
grammers and usersowld benefit from a relately standard, complete, and up-to-date
ervironment. As a steering language, theesal dereloper groups responsible for code
projects hae seeral sets of requirements and constraintsyThay well choose to cus-
tomize Python as necessary for their particular code, and should continue to be able to do
So.

6. Recommendation: Consider Some Ideasdm The Basis System

The Basis SystenDUB2] started as part of the MHRI project in the spring of 1984, in
the Magnetic Fusion Engy (MFE) program. The first usable codeyde to appear in the
winter of 1984-85. Basis spread through MFE for the Be4 years, then &s chosen as
the computer science infrastructure for the Unix port of the xagfi®11] code. The
Lasne/Unix project required another 3-4 years to mostly complete,wellioby 6-8
years of continuing refinement of Basis, which continues awvdelel up to the present
time.

Basis itself vas initially written in the Basis dialect obfran, called MPPL. MPPL is a
close cousin of the Unix m4 macro processoth slightly more coventional syntax and
some features specific t@fran (77), such as line length and columnveaitions. Oer

the years, most of Basis has beenveoed to C. Only one package remains in MPPL
today for testing purposes. Leayllor has, within the last 5 years or so, addey good
support for moderndttran in Basis.

Basis vas an ambitious projectD[JB3] with a lot of components that each pushed the
boundaries of language and user irgteef design and irgeation. It is still unique in the
sense that all its components were designedadik wogether as part of a steering lan-
guage system.

-10-

L. Busbhy STEERING LANGLAGES, 8/2014

6.1. The Basis Runrie Database

Basis defines and creates a run-time database as one component. Consider one element of
the Basis RDB: It has a complete C-compatible API for use from compiled code (the host
program.) Most operations on the RDB that can be done through the Basis interpreter can
also be done by the host program using that’ARImore modern name for this capabil-

ity is introspection — the host program can inspect s cariables and functions without

going to the scripting language. Thus operations such as dump/restart, mesh modifica-
tions, and so forth can be accomplished entirely from compiled code, using standard calls
to interact with the RDB. This is simple andiaént. Making it depend on the scripting
language wuld be vorse, not better

6.2. The Basis Data Description Langea

The run-time database canvatusly be modified dynamicallyHowever, much of it is
actually constructed and initialized at compile-time, using a data description language
(DDL) that Basis called dvariable descriptor file’'(VDF). Programs are brah into
packages, each of which is described by one or mored/DRe information in a VDF is
similar to ‘header’ files: Variable types, shapes, sizes, function signatugesups’ that

collect together those things, macro definitions, parameters, documentation, comments,
etc? Itis prosaic and from todag’perspectie, e/en a little passé.Aspects of the VDF

that need to be remembered are about asafsil&tatic initialization of the RDB is quite
important. The LasneRDB has perhaps 1200 entriest lary given problem input file
touches only a tinfraction of those ariables. The delilt values for the rest were set in a
VDF. Default values themsebs change as time goes. lhyasn& also has a system to
track deéult values through time, so that if an old problem is restartaifbles recee

the deéult value that vas in efect at the date the problem ran, instead of the date of the
code that is running it.

The VDF was designed to balance the needs of a human readddofuler aginst the
needs of a computer parsing the file. In general, the \AxdrsS the human. Most of the
information about a gen object is gthered together in one spot, and gaoized to gie

the human maximum clarity with minimumfeft. Header files, plus optional directs

that guide a program such as SWIG in generatjhge” code accomplish the same gen-
eral ends as does a VDBut the VDF vas designed to do its job, and thevdmpers for
whom it was specifically designed, do notice. This principle can be carried into a future
data description language.

6.3. The Basis User Interface Construction System

One last component in Basis seemeremore of an anachronism: The Basis scripting
language contains itsam macro processormhis can be used to define a domain specific
language (DSL) as the user intaré for a gien project. Egn as macro processors go,
(Dubois was fiamous for his‘l hate macros’comments) the Basisevsion is painfully
complicated to wrk with. Nevertheless, manusers consider it a gfftl don’t personally

3This feature — a C API that\gs the host program full access to the Lua state - is cited by the
Lua authors as one of theykreasons for that languagesuccess, and is an enduring design goal

-11-

L. Busbhy STEERING LANGLAGES, 8/2014

recommend a macro processBut as an element of user inggé design, the Basis
experience is wrth remembering. People do appreciate a user acerthat is concise

and designed for the task at hand. Although a steering language does sometimes require
power and generalitythe interéice designed on top of it also needs to be as simple as pos-
sible. Seeral users and @elopers commented to thefeft that a‘program input deck

should not be an API.

One other adantage that Basis had, not easily carried &odyis that its scripting lan-
guage is essentially egaient to its systems language(fan.Y This was certainly part

of the design: Early Basis documents suggest that algoritkiedogeenent could be done
using the scripting language, then easily transferred to MBRLaR with little change.

It is difficult to even properly appreciate this featuramnhanguage design has weal on,

and we imagine that &'a good thing for the scripting language to be independent from
the system languadeStill, when you consider the it that has gone into, sapyre

and Cython, to achie what is basically a blending of the scripting and system layers, it
is useful to remember that easier solutions to a similar problem been found in the
past.

6.4. Basis Summary

This has been a long sectiom feiterate the main points, here is a summary of some of

Basis’ good ideas:

* An run-time database (RDB) with a complete ISO C API for the host program(s);

* A language and process for initializing and constructing the RDB, designed for
humans; (and, seriouslyonsider the question of units.)

» A user interlce that goes well pend ‘wrapping” the internal objects of the compiled
code.

7. Conclusion
I considered subtitling this papewn$sibly the Least Surprisingaper of 2014, then

for their team.

4One other item that the VDF formally definesit bever used in practice, is units. It is aret
often epressed and deeply felt by Basis users andldpers alik that units were optional in the
VDF. It would not be triial to require units in a future databaset ibis certainly vorth consider
ing.

5In 1984, fertran didnt have header files; it as necessary tovant the VDF from the ground up.
8Interestingly it seems that Lua has considered a macro processor as late as 2R 1]In §7,
the comment is made thatVe still have not completely dismissed the idea @figing Lua with a
macio system: it would give Luatensible syntax to go withtensible semantics.(But don't
hold your breath....)

“This included strong typing. The Basis scripting language requires dhables be declared
before use, although it pridles a ‘chameleon’ type that can ary. There is a‘fnodern’ trend
towards stronger typing in dynamic languages. ¢gibod to kna that the Wheel of Reincarnation
is yet revolving.

8] know of some scripting languages that emulate the syntax of C or @tfphe has become
generally popularLeaving aside the technical issues, neither of those languageslistiikwin a
beauty contest.

-12-

L. Busbhy STEERING LANGLAGES, 8/2014

decided that (as usual) law not really taking account of the long term. | have learned
some nw, if mostly unsurprising to me, things. (And | do acktedge that gthering
together unsurprisingatts can sometimes be useful, and that wetyene has had my
experiences.)

Expression parsers are an interesting small piece of the steering probleta,me. My
attitude teovards the general processwafapping codeespecially in the embedded case,
changed noticeably as a result of reading, thinking, talking to other people, and trying out
a fawv simple things.

More than that, | hae come to appreciate some aspects of what | once treated asdecei
knowledge in a slightly dferent light. In PUB4] we wrote that ... the moshangeable
aspect of a scientific computerogram is what userwant to calculate with it. That cer
tainly does sound true. Later on (1998), inJB5] Dubois wrote that in his obseation,
most aerage scientists and engineersaaotfprogram computers for mowé part of the
time, and are therefore to thattent professional programmers. That also may be true,
and more so as time passest ¥find myself not sure that | entirely agree. More impor
tantly, I'm not sure that you the users of scientific programs agree.

The realistic choices that wevsawith regard to steering languages today makall too
easy for the wrapping step to also become the userdoeerThat seems morediKif it’ s
good for the programmer st'good for the uséy'which is a step bend “setting the sci-
entist free’, and may well not be true. Whatr else their benefits, steerable codes
require a collaboration between programmers and users.aykcollaboration, success
requires that each side needs to come a little more than déalfovthe centeOtherwise
the gap in the middle is all too clear

7.1. Aknowledg@ments

One last conclusion is that this papeaswather too lge a project for one person. Con-
fronting the sheer engy and scope of scripting languages, wrapping technologies, and
various programming e@ironments, is plenty enough to neakne feel constantly lazy
and ignorant. | could not kia done nearly so well without important help from gnan
nearby people. | am grateful to Rob Neely for suggesting the progeet! ®f you who
returned comments on my questionnaire, thank you. | am gratefultéarded coversa-
tions with Lee &ylor, Brian Ryujin, K/le Chand, Aaron Black, Deanillams, Walt Nis-

sen, Dm Brunner Rob Rieben, and geral members of the PMESH and Lasheams.
Mike Collette and Brian Ryujin personallgthered statistics about the Ares code for my
benefit. K/le Chand, Valt Nissen, and Aaron Black did the same for their codes. Dan
Laney, Jef Keaslerand Bnim Islam sent mexeended email commentary about steering
languages and their current uses.€fch of those indduals, thank you. Finaljyl am
indebted to the seral members of the Basis and Lasoede deelopment teams, and to
the many users of those systems, whadaaught me most of what | kwaabout steering
languages. If mistas remain in the papdahey are my responsibilityof course.

-13-

L. Busbhy STEERING LANGLAGES, 8/2014

8. References and Additional Reading

1. [ABA1] The GSL Shell Project: A Luajit wrapper around the Gnu Scientific Library
Seehttp://www.nongnu.og/gsl-shell/

2. [ARD1] Scimark benchmark for Pyp Seehttps://bithucket.oig/pypy/benchmarks/
commits/04c696b62ec7/

3. [BEC1] Bechtold, Bastian., Lunaticython, A two-way bridge between Python and
Lua. Seénttps://githubcom/bastibe/lunaticyghon

4. [BEZ1] Bezanson, J., Karpinski, S, Shah, &d Edelman, A., Julia: AaBt Dynamic
Language for &chnical Computing, arXi1209.5145 [cs.PL], 2012, See
http://arxv.org/abs/1209.5145

5. [BOOL1] Boost.jython interice generator: Séetp://www.boost.og/doc/
libs/1_55 0/libs/gthon/doc/

6. [CLO1] Cloc, a Perl script to count lines of code: Se#o://cloc.sourcefae.net/

7. [CON1] Continuum Analytics, source of Anaconda digtitibn of Python tools: See
http://continuum.io/

8. [CYT1] Behnel, S., et al., Cython: The Best of Bottov\s, Computing in Science
Engineering, 2011, v13n2, pages 31-39. 8ge//c/ython.og

9. [DEV1] Terra: A lov-level counterpart to Lua. Séxtp://terralang.ay/

10[DUB1] P.F. Dubois, A Nev Architecture for Lage Scientific Simulations, 1984,
https://e-reports-int.linl.gdpdf/197756.pdf

11[DUBZ2] P.F. Dubois, et al., The Basis System, M-22%yiesnce Lvermore Labora-
tory, Livermore, CA, 1988 (227pp.) Notes about the origin of Basis weea fabm
the preéce of this document. fuably the ‘best” Basis manual, it has apparently
been lost from, or ver entered into, the Lab librarystill keep a paper cep

12[DUB3] Dubois, PF. and MottelerZ.C., Basis: Setting the Scientist Free, 1988,
https://e-reports-int.linl.gopdf/215997.pdfThis is a good short summary of the
overall Basis system.

13[DUB4] Dubois, PF. and MottelerZ.C., The Basis Code Belopment System
(1995), Lavrence Lvermore National Laboratoreehttps://e-reports-int.linl.go
pdf/226458.pdf

14 [DUB5] Duboais, Raul F, Ten Good Practices in Scientific Programming, UCRL-
JC-132268, Sekttps://e-reports-int.linl.gopdf/234862.pdf

15[FBL1] fblualib: A collection of Lua/Drch utilities. Seéittps://githubcom/facebook/
fblualib

16 [HOAL] A pair of essays on interagg scientific computing. Sewtp://gray-
don2.dreamwidth.g/3186.html

17 [IER1] lerusalimsch, R., de Figueiredo, L. H., Celes, Y007. The eolution of Lua.
In the Third ACM SIGPLAN Conference on History of Programming Languages:
2.1-2.26, San Do, CA (June). Selettp://wwwlua.og/doc/hopl.pdf

18][IER2] lerusalimsch, R., de Figueiredo, L. H., Celes, Yassing a language through
the ge of a needle, BM Queue 9 #5 (May 2011) 20-29. Se#://queue.acm.gf
detail.cfm?id=1983083

19]KOL1] Blast team members include Tzaniolk, Robert Rieben, &selin Dobre,
Robert Anderson, Michaelufnbera, Thomas Brunnéeehttps://computation-
rnd.lInl.gov/blast/

-14-

http://www.nongnu.org/gsl-shell/
https://bitbucket.org/pypy/benchmarks/commits/04c696b62ec7/
https://bitbucket.org/pypy/benchmarks/commits/04c696b62ec7/
https://github.com/bastibe/lunatic-python
http://arxiv.org/abs/1209.5145
http://www.boost.org/doc/libs/1_55_0/libs/python/doc/
http://www.boost.org/doc/libs/1_55_0/libs/python/doc/
http://cloc.sourceforge.net/
http://continuum.io/
http://cython.org
http://terralang.org/
https://e-reports-int.llnl.gov/pdf/197756.pdf
https://e-reports-int.llnl.gov/pdf/215997.pdf
https://e-reports-int.llnl.gov/pdf/226458.pdf
https://e-reports-int.llnl.gov/pdf/226458.pdf
https://e-reports-int.llnl.gov/pdf/234862.pdf
https://github.com/facebook/fblualib
https://github.com/facebook/fblualib
http://graydon2.dreamwidth.org/3186.html
http://graydon2.dreamwidth.org/3186.html
http://www.lua.org/doc/hopl.pdf
http://queue.acm.org/detail.cfm?id=1983083
http://queue.acm.org/detail.cfm?id=1983083
https://computation-rnd.llnl.gov/blast/
https://computation-rnd.llnl.gov/blast/

L. Busbhy STEERING LANGUAGES, 8/2014

20[LEB1] Benchmark code forgression parsing and Scimark tests in this paper:
Contact the authpor seéhttps://bithucket.og/lebusby/splb

21[LUA1] General starting point for all things Lua: Sk#p://lua.og

22[LUC1] Lucks, Julius B., Python — All a Scientist Needs, eprint arB803.1838,
2008. Sednttp://arxv.org/abs/0803.1838

23[LUJ1] Luajit project home page: Séetp:/luajit.oig/

24[LUP1] Lupa: Python wrapper around Luajit. Seips://fypi.python.og/pypi/lupa

25[MA C1] Smem memory measuremenyifpon) script: Seattp://www.selenic.com/
smem/Smem attempts to proportion memory use among trexaeprocesses sharing
memory pages in a multi-processing operating systemadlles reported in the paper
were talen from the'PSS’ output of smem.

26 [MER1] A collection of links to projects that use Lua. Sei¢ps://sites.google.com/
site/marlix/home/where-lua-is-usehd see alsbttp://en.wikipedia.ay/wiki/
Lua_%28programming_language%R®Bout 100 packages in the Debian repository
depend on liblua.

27[MOL1] MATLAB origins story: Seéttp://www mathworks.com/compayinewslet-
ters/articles/the-origins-of-matldtiml

28 [MUH1] Muhammad, H. and lerusalimsghR., C APIs in Extension and Extensible
Languages, Journal of Wrgrsal Computer Science, v13n6 (2007), pps 839-853. See
http://wwwjucs.og/jucs_13_6/c_apis_inxeension

29]0OUS1] Ousterhout, J.K. (1990). Tcl: An embeddable command language. In Pro-
ceedings of the USENIX iter 1990 €chnical Conference, pages 133-146, Berk
ley, CA. USENIX Association. Seetp://webstanford.edu/ ouster/cgi-bin/papers/tcl-
usenix.pdf.

30[0OUS2] Ousterhout, J.K. (1998). Scripting: HigHevel programming for the 21st
century IEEE Computer31(3):23-30. Sebttp://www.tcl.tk/doc/scripting.html

31[PAL1] Scimark.lua code for tests as run in this paper: Beye://luajit.og/dovnload/
scimark.lua

32[PAR1] Extensve tests of seeral C++ @&pression parser codes: See
http://code.google.com/p/math-parkeEmchmark-project/

33[PYB1] Pybindgen softare interhce generator: Séetp://code.google.com/p/
pybindgen/

34[PYP1] Home page for Pypimplementation: Sekttp://pypy.org/

35[SAT1] Satish, N., et al., Can traditional programming bridge the Ninja performance
gap for parallel computing applications?, Proceedings of the 39th Annual International
Symposium on Computer Architecture, pages 440-415, IEEE Computer Society
Washington, DC, USA (2012). Ské#p://dl.acm.og/citation.cfm?id=2337210

36[SCI1] Scimark benchmark home page: $¢i://math.nist.ga/'scimark2/

37[SEL1] Lua interfice generator for C++ code: Sews://githubcom/jeremyong/
Selene

38[SWE1] T. Sweeng comments about scripting language problems: See
https://nevs.ycombinatacom/item?id=758518&nd see alsbttp://tinyurl.com/
gcosbzSor the original posting.

39[SWI1] SWIG home page: Simplified Wrapper and Inged GeneratoSee
http://www.swig.og/

-15-

https://bitbucket.org/lebusby/splb
http://lua.org
http://arxiv.org/abs/0803.1838
http://luajit.org/
https://pypi.python.org/pypi/lupa
http://www.selenic.com/smem/
http://www.selenic.com/smem/
https://sites.google.com/site/marbux/home/where-lua-is-used
https://sites.google.com/site/marbux/home/where-lua-is-used
http://en.wikipedia.org/wiki/Lua_%28programming_language%29
http://en.wikipedia.org/wiki/Lua_%28programming_language%29
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.jucs.org/jucs_13_6/c_apis_in_extension
http://web.stanford.edu/~ouster/cgi-bin/papers/tcl-usenix.pdf.
http://web.stanford.edu/~ouster/cgi-bin/papers/tcl-usenix.pdf.
http://www.tcl.tk/doc/scripting.html
http://luajit.org/download/scimark.lua
http://luajit.org/download/scimark.lua
http://code.google.com/p/math-parser-benchmark-project/
http://code.google.com/p/pybindgen/
http://code.google.com/p/pybindgen/
http://pypy.org/
http://dl.acm.org/citation.cfm?id=2337210
http://math.nist.gov/scimark2/
https://github.com/jeremyong/Selene
https://github.com/jeremyong/Selene
https://news.ycombinator.com/item?id=7585186
http://tinyurl.com/qcosbz5
http://tinyurl.com/qcosbz5
http://www.swig.org/

L. Busbhy STEERING LANGUAGES, 8/2014

40[TOL1] Tolua++ softvare interbce generator for C++: See
http://www.codenix.com/"tolua/

41 [TOR1] Machine learning toolkit featuring Luajit. Collobert, R., et abrdh7: A
Matlab-like Ervironment for Machine Learning, BigLearn, NIP®kkshop, 2011.
Seehttp://torch.chandhttp://ronan.collobert.com/pub/matos/2011_torch7_nipdfv

42 [ZIM1] Zimmerman, G.B. et al., LASNEX-A 2-D Rfsics Code for Modeling IGF
Inertial Confinement Fusion, 1996 ICF Annual Report, LLNL, UCRL-LR-105821-96,
Seehttps://lasers.lInl.ga/publications/icf_reports/annual_96.pdf

-16-

http://www.codenix.com/~tolua/
http://torch.ch/
http://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf
https://lasers.llnl.gov/publications/icf_reports/annual_96.pdf

L. Busbhy STEERING LANGLAGES, 8/2014

9. Appendix A: Expression Rrser Benchmarks

C++ | Fparser Lua Luajit Python Expression, as x = f(a,b)
0.0367] 3.14 76.6 14.8 189.| sin((1.0+2.0/2.0*3.0)*4.0"5)+cos(6.0¥
0.03790 3.89 23.0 14.1 58.0 a+1.0
0.0360, 4.09 242 14.7 59.3 a*2.0
0.0385 4.98 242 13.9 67.8 2.0*a+1.0
0.0382] 6.21 259 141 75.4 (2.0*a+1.0)*3.0
0.0421) 7.82 644 134 140.|1.1*a2+2.2*b"3
2.3541) 1.28 155 1.00 2.68.1*a"2.01 + 2.2*b"3.01
1.2282] 0.83 2.82 1.07 7.19..0/(a*sqrt(2.0%))*e"(-0.5*((b-a)/a)"2)
0.0928) 7.65 21.1 7.85 72.3 (((((((7.0*a+6.0)*a+5.0)*a+4.0)
*a+3.0)*a+2.0)*a+1.0)*a+0.1)

9 0.0837, 14.0 102. 8.28 218.| 7.0*a”7 + 6.0*a™6 + 5.0*a’5 +

4.0*a’4 + 3.0*a"3 + 2.0*a"2 +

1.0*xa"1 + 0.1

10 0.0774 412 24.7 10.3 57.9sqrt(a"2+b"2)

11 04761 1.19 3.38 2.01 5.8%in(a)

12 0.0728 2.32 215 9.42 43.2 sqgrt(abs(a))

13 0.0379 330 312 15.2 62.1 abs(a)

14 0.1681] 5.55 18.9 5.33 75.% (@/((((b+(((e*((((((((3.45*

((rra)+) +b)+b)*a))+0.68)+
e)+a)/a))+a)+h))+b)*a)y))

15 2.1368 1.28 252 1.05 6.0h + (cos(b-sin(2/ar)) - sin(a-cos(2*bf))) -
b

16 0.9613 1.17 281 1.26 4.63in(a) + sin(b)

17 0.5437 1.59 6.06 2.58 13.3abs(sin(sqrt(a™2+b"2))*255.0)

18 0.1649 2.25 7.63 3.97 25.4(b+al/b)* (a-b/a)

19 1.1536 1.50 3.02 1.15 7.710.1*a+1.0)*a+1.1-sin(a)-log(a)/a*3.0/4.0

20 1.2522] 124 240 1.10 4.83in(2.0 * a) + cost/ b)

21 1.2731 128 244 1.08 5.19.0-sin(2.0 * a) + cost/ b)

22 1.3956 1.33 294 1.33 6.4Bqrt(abs(1.0 - sin(2.0 * a) + cas(b) / 3.0))
23 0.08060 3.20 125 7.38 39.01.0-(a/b*0.5)

24 16753 113 176 0.90 3.290.0%og(3.0+b)

25 0.0760 225 224 7.37 42.0cos(2.41)/b

[0 15.5336 151 439 1.70 10.26C++: total seconds; Othex: aveage ratio
Table 7 — Full Expression Rrser Benchmark Results

O~NOOU|RAWNPR O|Z

Each epression was &aluated 10 million times.df the C++ column, time in seconds to
carry out the ealuation is recorded.df the other four languages, thalwe recorded is

the ratio to the C++ time. The finalwaecords the total C++ time to carry out 26 ¥ 10
evaluations, and thevarage ratio for each of the other languages. So, compared to C++,
Fparser was the &stest of the other languages, about 1.51 timegeslthan C++. All of
these tests were run as embedded codesadch language, a C++ codasauilt, linking
against the language okgression parser library to create ae@itable program.

L. Busbhy STEERING LANGLAGES, 8/2014

10. Appendix B: Wrapping Your Code

“Wrapping code’is the term used for creating an insé between a scripting language

and some particular set of files written in a system language. The scripting language gen-
erally has a C API that defines what it means for the scripting language to cdbrauale

(C) function, and vice-ersa. Structure definitions, function declarations, macros and so
forth are written to alle data to be passed back and forth, andke operations between

the layers.

In the bginning, wrapping \&s a programming aeity carried out by a human. (And it
still can be.) There is often a lot ofydarity in the ‘glue” code that wrapping creates, so
we rapidly bgan to deelop tools to automatically write the glue code based on some,
hopefully simplerdescription of the necessary ingarés.

When the project lman, | thought that waluating wrapping technology and perhaps
directly comparing tw or three of the toolsauld be a big part of theawk. | did a little

of that, and here’the answer: If yore interested in wrapping Python, consider SWIG,
[SWI1] boost.lython, BOO1]] and ybindgen. PYB1] For Lua, hae a look at SWIG,
tolua++, [TOL1] and Selene.§EL1] But before you go éfand spend a yeamaybe read
the rest of this section.

There are manblog postings that Iggn with words like V&ll, | tried SWIG and it didn’

do just what | wanted, so | ended up writing my own | read 6 or 8 of those before |
began to realize that there are indeed a lot aysvto interfice a scripting language with a
system language. Some are general, some are aimed at particular parts of the problem,
some write especially scrutable or inscrutable code, etc. Choosirbdke bne is like
choosing the best coloonly harderbecause i not so obiously arbitrary And it really
depends on the problem you are trying to eolv

If you are etending a code and need to connect lots of functions or methods to your
scripting language, SWIG is still pretty good. But a lot of people in that situatiga-no
days are using the foreign function ingaré in Cython (or Luajit), and fettively skip-

ping the wrapping step. Bavare that someone on your team needs to understand both
sides of the code that is wrapped, and the wrapping technalogwly the choices were
made. Understanding, for as long into the future as the ctsls,ds still necessargven

if the wrapping code is generated automatically

If you are liilding an embedded code system, think first about the useranggrand ho

your steering language will avk with that. Embedded intexfes tend to>@rcise the
steering language API more rigorously — the host code is doing more obthe-\go it

can be harder to automate the connection. Hand wrapping can still be a good choice, or
can be a good first choice, in order to understand the problems well enough to automate
them later

In an efort to better understand the scope of the problems, | attempted to compile some
information about h@ much wrapping code is actuallywoived in sgeral code systems.

It is difficult to derve these alues, and no little judgement is required to say whether an
particular line of code is part of the intece between the steering and system languages.
Table 8 does demonstrate that irded code can be a substantial fraction of a system.

In the table, | belige the Ares code is the onlyxample of an embedded system among

-18-

L. Busbhy

STEERING LANGLAGES, 8/2014

Interface(KLOC) Dtal(KLOC)
Code Name System Scripting System Scribting Wrapping T
Ares 10.1(2.2%) 0 456.5 12. hand-wrapped
PMESH 81.8(29%) 0 276.5 2.4 SWIG + hand-wrapped
uv-cdat 219.9(40%) 4.3(2.0%0) 548.4 215.2 SWIG + hand-wrapped
pygsl+gsl 80.2(26%) 12.7(36% 314.3 35/5 SWIG
Lasne 359.8(54%) 44.8(61%) 671 3.9 Custom scripts
KUJO 1.7(37%) 0 4.6 0.3 toluat++

Table 8 - Interface Code Countsdr Several Systems

the s@en. Numbers for the others suggest thaterface codé’may be”s to ¥ of the

total code in a system. This code may be rarely encountered by most of the programmers.
However, someone must be capable of understanding the entire sysieni.dfg of us

really enjy working with SWIG (for @ample), and thatakt is part of the maintenance

problem.

-19-

L. Busbhy STEERING LANGLAGES, 8/2014

11. Appendix C: Comments on Some Curmnt Languages and Pograms

There is a great deal of interestingriw being done, both in the area of steering lan-

guages and outside. In no particular orthere are some comments on curreotkithat

may hae an impact on our choices in the future.

1. Julia BEZ]] is an efort to skip the clumsy parts about mixingaanguages into one
code. Its closer to a steering language than a system language, because it can be eas-
ily extended using libraries of compiled code. It attempts wehtae performance of a
system language, using JIT technology dependence on MM makes it firly com-
plex to install and maintain, although Julia proper is still rather small (about 34 KLOC
of C, plus 74 KLOC of Lisp.) It cahreally be used in an embedded sense, and you
cant (presently) use Julia tauldd object files linkable from another language. But it
has mag very appealing and innative features. HoareHOA1] called it a
“Goldilocks” language. As with the protagonist of that stdrthink most of us who
care, hope that Julia will succeed.

2. Terra DEV]] is several kinds of language. As the Scimark resultsvgtbearlier in
this paperit is a \ery high performance implementation of Lua. (It can run unmodi-
fied Lua code.) It migs together Luajit, LM, and Clang, so i not trvial to set it
up and maé it work. But it works pretty well in my xperience sodr, given hav
young the project is.

The important part oféfra is something quite ux@ected. The authors of Satish et al.
(2012), BAT1] showved that optimizing memory cache performance along with small-
scale ectorization and threading could impeoperformance of scientific codes by a
factor that weraged wer 20x. The paperas \ery good, and | hee no issue with their
results. Havever, | felt the authors were a little disingenous with respect to some of
the practical dffculties around memory cache optimization, in particutas hard to

do in the first place, because cut and try is about the oaliahle stratgy. It's even
harder to do in the sense of portabili@ur current system languages (C, C+ei-F
tran) limit our ability to easily find the optimums, and limit our ability fpess them

in a portable \ay.

Terra innwates on both those points. It is avltevel, strongly typed system language
that can dfciently capture the machineviel details of optimal code. And thatwe

level language‘Terra’ is connected to Lua as a set of first-class objects and mecha-
nisms, so that you can use Lua tbcgntly write Terra. For example, you can write
loops in Lua to parameterize the search for optimal codeema.T Furthermore,
although Brra has some hea dependencies as mentioned \ahoit is designed to
create small independent object files as an end product. So it can potentially play well
as a smalldst part of a code mostly written in some other (system) language.

From my perspeate, Terra is like a 50 pound diamond that fell from they,sfonly
with more olvious uses.) Een otherwise sensible people might be a little cautious in
approaching. It is definitely evth a look, It not as a steering language.

3. Torch7 [TOR]] is a machine learning toolkit, deloped at Idiap Research Institute,
New York University and NEC Laboratories America my knavledge, it is one of
the more complete current scientific systems based on Lua and Luajit. The core of
Torch7 is a multi-dimensional array module. It alsovftes a plotting package, a

-20-

L. Busbhy STEERING LANGLAGES, 8/2014

binding to the Qt graphics framverk, a binding to the Cephes special scientific
functions library and mawy, mary others. There seems to be a team atebBook
developing orch-related toolsHBL1] and utility libraries.

4. GSL-Shell ABA1] is a Luajit based wrapper around the Gnu Scientific Libtagan
be hard to install from source, because the graphics library it uses is a bittalds b
very nice once i running. It is a finexample of the use of the Luaijit foreign func-
tion interface to easily link to a C librarffhe GSL is a ery good library of general
scientific functions, all brought to the Lua command line and meaitable for easy
computation and graphic display

5. Lunatic-psthon, BEC1] Lupa, [LUP1] and one of the libraries cited in thadebook/
Torch7 FBL1] utilities all aim to connect Lua with Python. No endorsement is made
here, only the comment thatveeal packages to carry out such functionality giste
already Python and Lua eachVYea complete API to C, so in principle it is entirely
reasonable to connect packages in one language with a running interpreter in the other
In practice, that wuld be relatiely simple for simple tasksubdifficult to fully gen-
eralize. There are mgralternatve ways to mee data between processes, of course,
so it's not clear when or if weauld eser wish to do this ourseds.

-21-

